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Abstract 

While some experiments seem to confirm the contention that the axial 

buckling load of a pressurized cylinder approaches the classical value (i.e., 

the value predicted by the linear buckling equations) for sufficiently large 

internal pressure, other tests indicate a much smaller buckling load increase 

resulting from pressurization. 

an elastic shell with asymmetric imperfectionstbut sufficiently free of 

axisymmetric imperfections closely coincides with the classical value for 

Here it is shown that the buckling load of 
-- I 
A 

relatively small values q f  internal pressure; while the rbuckling load o f  a 

shell with a predominance of axisymmetric imperfection can remain well below 

the classical value for the entire range of internal pressures for which the 

$ 
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shell buckles elastically. 

upper bound to thei buckling load as predicted by the non-linear Donnell-shell 

I- I equations for a shell with axisymmetric imperfections.' 

Of particular interest is the calculation of an 
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INTRODUCTION 

The several published analyses of pressurized cylindrical shells under 

axial compression do not adequately explain the variety of behavior which has 

been reported for such structures. The linear buckling equations predict that 

the buckling parameter 

2 R  h = J3(1 - v ) Eh (a - E) 
is unity for pressurized and unpressurized shells. Here a is the applied 

compressive stress and pR/2h is the axial stress resulting from pressurization 

as depicted in Figure 1. Experiments indicate that this buckling parameter is 

usually on the order of one half or one third for unpressurized shells and is 

larger for pressurized shells. In some tests the parameter is unity for shells 

under sufficient internal pressure, while in other cases this parameter remains 

well below unity for the entire range of  pressures for which the shell buckles 

elastically. 

UU, W Q L C  cuu D L I I W ~ L L L  (I) useu nun-linear Ducuing equaLlons for a perxect 

shell and employed the energy criteria of buckling to show that the buckling 

parameter, as defined here, increases from .62 at p = 0 to unity at 

pR2/Eh = .17 . 
shells based on a non-linear analysis. He obtains load-deflection curves from 

which is obtained the minimum load the shell can support following buckling. 

This minimum load increases with increased internal pressure. 

2 Thieleman (2) also reported calculations for initially perfect 

The role of shell imperfections, known to be the main degrading factor in 

unpressurized shells, was not considered in either of the above mentioned papers. 

Lu and Nash (3)  have studied the effect of initial imperfections on the minimum 
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load the shell can support in the post-buckling region. This analysis also 

shows a larger minimum load for pressurized shells than unpressurized ones. 

From a design stand-point, the maximum load the shell can support prior to 

buckling is of more interest than the minimum post-buckling load. Indeed, it is 

this value which most experimenters record and which we will designated as the 

buckling load in this report. 

Donnell-type shell equations will be obtained which display the role of 

axisymmetric and asymmetric imperfections on the buckling load of a pressurized 

elastic shell. It will be seen that axisymmetric imperfections of a certain 

wavelength are particularly degrading. An upperbound to the exact buckling load 

as predicted by the non-linear equations is obtained for the case of axisymmetric 

imperfections. Finally, these solutions are compared with some experimental 

results, and it is noted that they seem to account for the variety of reported 

behavior. 

Here, approximate solutions to the non-linear, 

DONNELL SHELL EQUATIONS 

Ille elPbLlC: S I l r l l  I b  L l l d L d C L e L L d e U  V y  I L b  L d U I d l  U I b t ) l d C ~ l i l ~ l l L  W ( p U b L L L V e  

outward) and an Airy stress function F which gives the resultant membrane 

stresses as 

to have an initial imperfection in the form of an initial, stress-free radial 

displacement W , With x and y as the Cartesian coordinates in the axial 

and circumferential directions,the equations are 

= F  and N = -F . The shell is assumed 
Nxx ,YY ' NYY 7 xx XY 3 XY 

= F  

0 

2 w = o  - w  - 2wo,xy ,xy ,xx)w,yy + wo,Yyw,xx 9 XY 
1 'y 4 F - - 1 W 

+ (Wo,xx + w  R ,xx Eh 
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and 

+ W  + 2W0 F 1 
- (wo,xx ,xxlF,yy - (w,yy + wo,yy)F,xx Y Y Y x y  

Eh3 V 4 W + ~ F  > xx 
12(1 - V 2 )  

where v 4  is the two dimensional biharmonic operator. 
CLASSICAL BUCKLING 

We consider a perfect cylinder (Wo = 0) under internal pressure p and 

axial compressive stress u (in addition to the axial stress resulting from 

the internal pressure). The state of deformation can be written as 

V 1 w = -  E (oh+?) + ~ p R + w  

1 1 2 2 
F =  ( - - u h + ~ p R ) y  2 + i p R x  + f 

(3) 

(4) 

where the terms added to w and f constitute the prebuckling solution for the 

perfect shell. The classical buckling equations are obtained by substituting 

(3)  and (4) in the Donnell-shell equations and then linearizing the resulting 

equations with respect to w and f . The linear buckling equations are 

= o  Eh 

1 
R ,xx + - f  = o  v4 w + (ha - F)w , xx - pRw,yy Eh3 

2 
1 2 ( 1  - v ) 

(5) 
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Solutions to these equations are well known.jC The eigen-value 

corresponds to a radial deflection mode of the form 

and the associated stress function 

where 

and 2 2 2  q4 = 12(1 - v )R /h 
0 

The classical buckling parameter for the unpressurized shell, obtained by 

minimizing A, as given by equation (7) with respect to a and B , is 
n 

* 
neglecting the boundary conditions at the ends of the shell. 
end conditions Hoff (4) has produced a solution to the linear buckling 
equations which predicts buckling at 
cylindrical shell. It is not known if the post-buckling behavior in this 
case is unstable, nor is it clear that the shell is significantly imperfection - 
sensitive for buckling in this mode. Although in certain instances the shell 
buckling may be characterized by the solution obtained by.Hoff, we will assume 
that shell imperfections result in the main reduction of the buckling load 
below what is generally accepted as the "classical" value, 

In this paper we will assume the shell is sufficiently long to justify 
For certain 

X = 1/2 for an unpressurized 

X = 1 . 



with an infinite number of associated buckling modes such that 01 and B 

satisfy 

Included in this set of critical buckling modes are the axisymmetric mode 

1 1 w = cos(qox/R) and the asymmetric mode w = cos( 7 qox/R)cos( qoy/R) . 
The classical buckling load (i.e., value of buckling parameter) for the 

pressurized shell is also unity 
2 

6 

however only the axisymmetric mode, w = cos(qox/R) , is associated with this 
critical value. All other modes of the form of equation (8) are associated with 

eigenvalues larger than unity. Thus, for example, corresponding to 

I 1 
2 w = cos( - qox/R)cos( 7 qoy/R) is the eigen-value h. = 1 + . 

NON-LINEAR BUCKLING EQUATIONS 

We mast turn to the non-linear equations and the effect of initial imper- 

fections to explain the discrepancy between the predictions of the linear or 

classical theory and common experimental observations. It is of particular 

interest that Koiter (5) has presented an analytic procedure for obtaining the 

role of imperfections in imperfection-sensitive structures. This work is perhaps 

more readily available in reference ( 6 )  or in a less general form in reference 

(7). His general theory for cylindrical shells (8) indicates that an imperfection 

in the form of the radial displacement component of the axisymmetric buckling 

mode, W =kcos(qox/R) , 
load of an unpressurized shell under axial compression to one half or even one 

third the classical value for values of P only a fraction of the shell thickness. 

is the most degrading and is able to reduce the buckling 
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In general any radial imperfection pattern of the shell can be represented 

by a double Fourier series in the axial and circumferential coordinates. We 

will restrict ourselves to a consideration of just two terms of such a series - 
one axisymmetric and one asymmetric. 

radial displacement component of a linear buckling mode of the unpressurized 

shell, 

Both are taken to be in the form of a 

Thus, we study the behavior of a pressurized cylindrical shell under an 

applied axial load where the initial imperfection is assumed to be 

- - 
where El and k2 are the ratios of  the amplitude of the imperfection to the 

she1 1 thickness . 
Any equilibrium state of the axially loaded cylinder can be written in the 

form of (3) and ( 4 ) ;  we approximate W by 

1 1 1 
W = Slh cos(qox/R) + E2h cos( y qox/R)cos( 7 qoy/R) + E3h sin( 3 qox/R)cos( 7 qoy/R) 

(13) 

Here 5 ,  , 6, and 5, are the ratios of the amplitude of the deflection in the 

axisymmetric or asymmetric modes t o  the shell thickness. 

Solutions to the full non-linear equations (1) and (2) are obtained in the 

9: following manner. First, since equatien (1) is a c o n p a t i b i l i t y  It is solved. 4 

exactly for F in terms of  the assumed W . This is accomplished with the aid 
of equations (3)  and ( 4 ) .  Since we are ignoring the end conditions and as the 

average stresses in the shell are given by the polynomial terms in ( 4 ) ,  f is 

required to be the sum of terms periodic in the axial and circumferential 
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directions. Secondly, we solve equation (2) (an equilibrium equation) approximately 

by substituting in F and W and then applying the Galkerin procedure. The steps 

of this calculation are easily carried out and the resulting equations are 

(15) 

and 

I 7 
wnere c: - v I . 

A solution t o  these equations would provide the equilibrium configuration 

of the shell as a function of A ,  i.e. El , E,2 and k3 as a function of . 
If h attains a maximum as the compressive axial load is applied then this is 

the value of h associated with the buckling load. It will be denoted by . 
The essential character of the shell behavior in the prebuckiing and immediate 

post-buckling description is retained if the terms of order E,E , kE2 and E-3 

are omitted from the previous three equations. With this simplification the 

equations to be studied are 

- 2  
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and 

For sufficiently small E and E, , these equations yield a buckling 1 

load which is asymptotic to that predicted by (14), (15) and (16) if 

If > 0 we cannot make this assertion; however, the upperbound solution for 

the case of axisymmetric imperfections obtained in a later section indicates that 

these equations provide a sufficiently accurate estimate of the buckling load for 

the purposes of this paper. 

i = 0 . 

The behavior of the perfect shell as predicted by these equations is shown 

in Figure 2. A perfect shell suffers no deformation in the buckling modes 

( E  =E =E =O) until A reaches unity. With X remaining at unity, deformation 1 2 3  - 
can occur in the axisymmetric mode; aed since 

positive or negative values. If as shown in Figure 2 El attains the value 

5, = 0 , El can take on either 

- 9:120 +he r n n f f i r i e n t  n f  E. in enriation (18) vanishes and a bifurcation 

of the solution occurs. The bifurcated solution corresponds to falling values of 

& 

A with deformation in both the El and E2 modes. If the deformation is such 

that El attains the value 2p/3c , then the coefficient of E3 equation (19) 

vanishes and A falls with deformation in the 5, and 5, modes. In either 

mse, the maximum value of ). attained is the classical value, A = 1 . 
AXISYMWETRIC IMPERFECTION 

If the imperfection is purely axisymmetric (E2 = 0, > 0) the prebuckling 

deformation is also purely axismetric. From (17) 

x -  k - E, - -- l - A  1 
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and 5 =E- =O until there is a bifurcation of the solution which occurs &en the 
2 3  

coefficient of E2 in (18) 

- 3 
2 1 + p - ?I. + - CE, - Cil 

vanishes. Following bifurcation the value of h falls with deformation occuring 

in the E2 as well as the axisymmetric mode. This behavior is also depicted in 

Figure 2. The maximum value of X , denoted by A M  , occurs at bifurcation 

and is found from the previous two equations to be 

* 
2 ( 1  + - h M ) ( l  - AM) - (2 +hM)C$ = 0 

The buckling load for an unpressurized shell is given by 

and is shown as t h e  dashed cuma in-Figure 3 where‘ht can be compared with an upper- 

bound so lu t ion  obtained fli a L a t e r  secthn. hM vs p curves obtained from 
- 

*e-. - - e  - -  1. ~ . l - -  t~:. -1-t . T ’ J ~ - - ~ E  n f  E haxrp heen chosen such 
I v ,--, --- =-. --- --- - - 

that the unpressurized shells buckle at A. = .3 ,  - 5  and -7 a These curves as 

well as all others in this paper are calculated with V = 1/3 . 

If both i1 and i2 are non-zero, deformation occurs in both the 5 and 1 

E2 modes for any non-zero values of 6 and h . Non-zero values of E can 3 

* 
If g1 < 0 , the coefficient of 5,  in (19) vanishes when h reaches 
and the bifurcated solution corresponds to falling values of h with 
deformation in the 5 ,  and 5 ,  modes. AM is thus dependent only on the 

absolute value of 
- 
51 



occur only if the coeffic-ent of 

moment we will assume does not happen. 

5, in equation (19) vanishes, which for the 

An expression relating A. and E, can be obtained by eliminating g, from 

the two equilibrium equations (17) and (18). This is 

A maximum value of X (if it occurs) is associated with - d X  
E2 

= 0 . 
analogous to (20) 

M 

This condition along with (22) yields an expression for 

but considerably more complicated. It was found more convenient to obtain X 

from a plot of h VS. E, using (22) . If El is positive and large compared 

to 5, J 5 ,  assumes only negative values and the coefficient of t3 in equation 

XM 

- 

(19) 

(23) 
3 (1 + ; - X) - cfl + “5, 

does not vanish. However, when is zero or small compared to i2 negative 
values of El are possible; and for sufficiently large values of 6 it was 

found that this coefficient vanished for a value of h less than the A M  

provided by (22). Furthermore, in these cases it was found that the bifurcated 

solutioii resulted in decreasing with defcrmaticn in the 5, a s  well as 

1 

and E2 modes. In such cases the maximum value of attained is that 5 1  
for which (23) vanishes. 

The indicated calculations were carried out for several combinations of 

was obtained over a range ‘M ’ El and i2 ; and the maximum value of X, 

M of from 0 to 4. vs 6 curves are shown in the three plots of Figure 5. 
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- 
In the first plot the combinations of E, and f, are such that the unpressurized 

cylinders buckle at AM = .7 , 
buckle at .5 and .3 when free of internal pressure. 
also included. 

It is clear that prediction of the buckling load of a pressurized cylinder 

while the other two plots depict cylinders which 

The curves of Figure 4 are 

requires knowledge of the relative amount of axisymmetric imperfection of the 

wave length R/2nqo . 
the pressure while the axisymmetric ones are not. If .??/E, is small h is 

almost the classical value when p is near unity. If, however, the initial 

imperfection is purely axisymmetric the buckling load is much less influenced by 

internal pressure as indicated by the curves 

In effect, the asymmetric imperfections are ironed out by 

M - 

i1/i2 = OD. 

AN UPPER BOUND FOR THE CASE OF AXISYMMETRIC IMPERFECTION 

The previous approximate analyses bares the role of the axisymmetric 

imperfection of wave length R / 2 q  . Not only does it have the largest degrading 
effect for the unpressurized shell, for buckling with 7 1 it almost completely 

determines the buckling load. With relatively little difficulty an upperbound 

to the buckling load as predicted by the non-linear Donnell-shell equations can 

be obtained for a cylindrical shell with axisymmetric imperfections. 

particular interest in light of the role of such imperfections 

nature of the previous calculations. 

0 

This is of 

and the approximate 

Only the steps of this calculation will be recorded here since the details 

of a similar calculation for unpressurized shells have beenLgiven by Koiter (8). 

If the imperfection is of the f o m  
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the state of deformation of 

w =  (i 2Vhh + 

40 

2 

the shell can be written as 

XElh 
(1 + v )  E’- - E 1-A, 

where the terms in the brackets are the exact prebuckling solution to the non- 

linear Donnell-shell equations (1) and (2). Prior to buckling, w and f are 

zero. 

deformation. Thus, we look for the value of the load parameter X at which the 

non-linear shell equations admit non-zero solutions for w and f . Substituting 

(24) and (25) in (1) and (2) and linearizing with respect to w and f (we are 

looking for infinitesimal deviations from zero) we find 

Buckling occurs with the first deviation from the axisymmetric prebuckling 

2 

cos(q x/R) w = 0 (26) 
0 7 YY 

EGlh2 
cos(qox/R) f + cos(q x/R)w 

,YY R(1 -w 0 , YY 
Eh3 

2 12(1 - v ) 

-pRw = O  (27) 
.2EXh +- 

2 :xx 7 YY 
90 

An exact salution to these equations is not found; however, an approximate 

method is employed which guarantees that the estimate of the buckling stress is 

an upperbound to the exact buckling stress. Assume 

w = Eh cos(qox/2R)cos(yqoy/2R) (28) 
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Solve the compatibility equation (26) exactly for f in terms of the assumed 

w . f must be the sum of terms periodic in the axial and circumferential 

direction since we have ignored the end conditions and the average stresses in 

the shell are represented by the polynomial terms in F in equation (25 ) .  Then 

apply the Galkerin procedure to equation (27 ) .  This method of solution is 

equivalent to an approximate minimization of the second variation of the energy 

by the Raleigh-Ritz method, which ensures that the eigen-value so obtained is an 

upperbound to the buckling stress.* This straightforward calculation yields the 

following eigen-value equation 

l +  J = o  
(1 + Y 2 ) 2  (9 + y2)2  

2- 2 
+ 4(CY El) E 

- 
51 The approximate buckling load, A M  , for any given values of fi and 

corresponds to the value of  y such that h given by (29) is a minimum. 

With = 0 , (29) is the equation Koiter used to plot an upperbound to the 

buckling load of an unpressurized shell with axisymmetric imperfections. This 

curve for v = - 3 

value of from (29) corresponds to values of y in the neighborhood of unity 

and (29 )  becomes 

is shown i r r  Figure 3. For small values of & the minimum 1 

2 ( 1  - A;) 3 - ( Z  - +(2 + A;)cE1 + 25 26 (CE1) 2 = 0 

(30) * 
An elaboration of this statement is found in Appendix I. 
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-2  Equation (2 ) f r o n  t h e  more approximate a n a l y s i s  i s  obtained i f  t h e  e term 

i n  ( 3 0 )  i s  neglec ted ;  and thus  as seen i n  F igure  3 ,  t h e  two curves approach each 

o the r  f o r  s u f f i c i e n t l y  sinall 

P 1 

- 
51 

For non-zero va lues  of 6 t h e  minimum X. with  r e s p e c t  t o  y i s  found 

from (29) wi th  t h e  use  of a d i g i t a l  computer. 

p re s su re  curves  are shown i n  Figure  6. 

i s  an upperbound t o  t h e  buckling load f o r  a s h e l l  with t h e  i n i t i a l  imperfec t ion  

Three t y p i c a l  buckl ing load - 

% as obta ined  from (29) o r  t h i s  f i g u r e  

- - El and i n t e r n a l  p re s sx re  corresponding t o  t h e  parameter p . The t h r e e  curves 

of Figure 4 obtained on t h e  b a s i s  of t h e  approximate c a l c u l a t i o n  do not  d i f f e r  

apprec iab ly  from t h e  upperbound curves of F igure  6 ,  al though t h e  va lue  of 

a s soc ia t ed  wi th  each approximate curve i s  smaller than  t h e  va lue  a s soc ia t ed  wi th  

t h e  corresponding upperbound curve. 

j u s t i f i e d  i f  one wishes t o  r e l a t e  the  buckl ing load  of  a p re s su r i zed  cy l inde r  t o  

t h e  buckl ing load of an unpressurized cy l inde r  wi th  s i m i l a r  i n i t i a l  imperfect ions.  

1 5 

Use of t h e  curves of Figure 5 would seem 

The e l a s t i c  buckl ing desc r ip t ion  i s  v a l i d  only as long as no p l a s t i c  

deformationoccurs  p r i o r  t o  buckling. The e l a s t i c  hoop s t r a i n  due t o  i n t e r n a l  

p r e s s u r e  a lone  i s  of t h e  o rde r  

w i l l  occur  w e l l  before  t h e  p re s su re  parameter a t t a i n s  t h e  value 10. Clearly,  

t h e  buckl ing load can remain below the c l a s s i c a l  va lue  f o r  t h e  e n t i r e  range o f  

e l a s t i c  buckling. 

ph /R.  Thus, i n  most cases p l a s t i c  deformation 

CCIPARISON 'WITH SOME EXPERIKEXTAL RESLITS 

Recent t es t s  wi th  Mylar cy l inders  performed by Weingarten, Morgan and Seide 

Mylar (9) are p a r t i c u l a r l y  s u i t e d  t o  comparison wi th  t h e  r e s u l t s  obtained here .  

i s  a b l e  t o  s u f f e r  reasonably l a r g e  s t r a i n s  p r i o r  t o  deforming p l a s t i c a l l y .  Thus, 

Weinga-tren, et .  al., were a b l e  t o  perform a series of tes ts  a t  d i f f e r e n t  i n t e r n a l  

p r e s s u r e s  with t h e  same specimen without i ncu r r ing  any p l a s t i c  deformation. 
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Figure 7 presents two typical tests series and two theoretical curves chosen 

from Figure 5 which best fit the experimental data. Weingarten, et. al., did not 

report any information with respect to either the form or magnitude of the imper- 

fection which would permit us to assign values t o  g, and E2 . Certainly the 
imperfection representation (12) assumed in the analysis could represent the true 

imperfection only in an average sense; and especially for < 1 , a more exact 
description would require additional asymmetric terms. Nevertheless, the form of 

the experimental results can be reproduced by an appropriate a posteriori choice 

- 

The radius-thickness ratio of the previously mentioned tests ranged from 

200 to 2000, with the maximum load of the unpressurized shells ranging from about 

.6 of the classical value at R/h = 200 t o  . 3  at R/h = 2000. This R/h dependence 

is most readily interpreted in light of the present analysis by associating larger 

imperfections (relative to the shell thickness) with larger values of 

Indeed, it seems reasonable that such would be the case. 

R/h . 

Judging from the results presented, the relative amount of the axisymmetric 

imperfection is small compared to the asymmetric imperfections in the Weingarten, 

et. al., test specimens. This is particularly the case for specimen 100.2, and 

the buckling load is only slightly below the classical value for 

in Figure 7 is data from a series of tests on axially loaded, pressurized aluminum 

cylinders performed at the D.V.L. and reported by Thieleman ( 2 ) .  

of tests, new specimens had to be used for each test; and although the radius and 

thickness were unchanged, there was undoubtedly some variation in initial 

imperfections from specimen to specimen as indicated by the data scatter . The 

important feature of these tests is that the buckling load remains well below 

the classical value for values of the pressure parameter well above unity. 

Axisymmetric initial imperfections are strongly suspected. 

6 > 1 . Included 

In this series 
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APPENDIX I 

We have asserted that X as obtained from equation (29)  is an upper bound 

to the exact buckling load as predicted by equations (26) and ( 2 7 ) .  The following 

demonstratien follows from Koites's ( 6 )  general theory of elastic instability. 

The trivial (or prebuckling) deformation at a given value of load X is denoted 

by ws and is construed in a generalized sense. If w is any kinematically 

admissible deformation in addition to the prebuckling deformation 

change in potential energy of the structure is 

then the 
s '  

w 

where P [w,X] is a functional which is homogeneous and of nth degree in w . 
P [w,X] is zero since w is an equilibrium configuration. We have assumed 

n 

1 S 

w is sufficiently small to make this expansion meaningful. 

At any value of the load parameter, A ,  the structure is stable if 

a' Thus, if for any and admissible w 

then cb-zimsly >, xc where X is the lowest value of X such that there 

exists an admissible w for which P2(w,X) = 0 . 
C 

In the present case the terms in the brackets of equations (24)  and (25) 

constitute the exact trivial solution w . Equations (26) and (27) are equivalevt 
to the Euler equations for minimizing 

compatibility equation exactly in terms o f  the assumed radial component of the 

S 

P2(w,h) . Since we have solved the 
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shell displacement, the stresses are derived from an admissible displacement 

field. The Galerkin solution to the equilibrium equation is equivalent to an 

approximate Raleigh-Ritz minimalization of 

admissible displacement which we have assumed is denoted by gw then the 

approximate eigen-value X is found by 

P2(w,X) . That is, if the additional 

a' 

a 

4- P (ELWa,X,) = 2EP2(wa,Xa) = 0 as 2 

Thus by (A-1) ka 5 X e 
C 
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